The first babies conceived with a sperm-injecting robot have been born

Last spring, engineers in Barcelona packed up the sperm-injecting robot they’d designed and sent it by DHL to New York City. They followed it to a clinic there, called New Hope Fertility Center, where they put the instrument back together, assembling a microscope, a mechanized needle, a tiny petri dish, and a laptop.

Then one of the engineers, with no real experience in fertility medicine, used a Sony PlayStation 5 controller to position a robotic needle. Eyeing a human egg through a camera, it then moved forward on its own, penetrating the egg and dropping off a single sperm cell. Altogether, the robot was used to fertilize more than a dozen eggs.

The result of the procedures, say the researchers, were healthy embryos—and now two baby girls, who they claim are the first people born after fertilization by a “robot.”

“I was calm. In that exact moment, I thought, ‘It’s just one more experiment,’” says Eduard Alba, the student mechanical engineer who commanded the sperm-injecting device.

The startup company that developed the robot, Overture Life, says its device is an initial step toward automating in vitro fertilization, or IVF, and potentially making the procedure less expensive and far more common than it is today.

Right now, IVF labs are multimillion-dollar affairs staffed by trained embryologists who earn upwards of $125,000 a year to delicately handle sperm and eggs using ultra-thin hollow needles under a microscope.

But some startups say the entire process could be carried out automatically, or nearly so. Overture, for instance, has filed a patent application describing a “biochip” for an IVF lab in miniature, complete with hidden reservoirs containing growth fluids, and tiny channels for sperm to wiggle through.

“Think of a box where sperm and eggs go in, and an embryo comes out five days later,” says Santiago Munné, the prize-winning geneticist who is chief innovation officer at the Spanish company. He believes that if IVF could be carried out inside a desktop instrument, patients might never need to visit a specialized clinic, where a single attempt at getting pregnant can cost $20,000 in the US. Instead, he says, a patient’s eggs might be fed directly into an automated fertility system at a gynecologist’s office. “It has to be cheaper. And if any doctor could do it, it would be,” says Munné.

MIT Technology Review identified a half-dozen startups with similar aims, with names like AutoIVF, IVF 2.0, Conceivable Life Sciences, and Fertilis. Some have roots in university laboratories specializing in miniaturized lab-on-a-chip technology.

So far, Overture has raised the most: about $37 million from investors including Khosla Ventures and Susan Wojcicki, the former CEO of YouTube.

More babies

The main goal of automating IVF, say entrepreneurs, is simple: it’s to make a lot more babies. About 500,000 children are born through IVF globally each year, but most people who need help having kids don’t have access to fertility medicine or can’t pay for it.  

“How do we go from half a million babies a year to 30 million?’” wonders David Sable, a former fertility doctor who now runs an investment fund. “You can’t if you run each lab like a bespoke, artisanal kitchen, and that is the challenge facing IVF. It’s been 40 years of outstanding science and really mediocre systems engineering.” 

While an all-in-one fertility machine doesn’t yet exist, even automating parts of the process, like injecting sperm, freezing eggs, or nurturing embryos, could make IVF less expensive and eventually support more radical innovations, like gene editing or even artificial wombs.

But it won’t be easy to fully automate IVF. Just imagine trying to make a robot dentist. Test-tube conception involves a dozen procedures, and Overture’s robot so far performs only one of them, and only partially. 

Esta entrada también está disponible en: Español

Por favor síguenos en Google News:

Acerca de Andrey Robles

Subscribe to our Weekly Newsletter